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Abstract: Strong orthogonal arrays are suitable designs for computer experiments because of stratification
in low-dimensional projections. However, strong orthogonal arrays may be very expensive for a moderate
number of factors. In this article, we develop a method for constructing space-filling designs with more
economical run sizes. These designs are not only column-orthogonal but also enjoy a large proportion of
low-dimensional stratification properties that strong orthogonal arrays ought to have. Moreover, a class of
proposed designs can be 3-orthogonal. In addition, some theoretical results on regular fractional factorial
designs are obtained as a by-product.
Résumé: Les tableaux fortement orthogonaux constituent une classe de plans d’expérience bien adaptés aux
expérimentations par ordinateur, et ce en raison de la stratification dans les projections en basse dimension.
Ils peuvent toutefois être très coûteux même en présence d’un nombre modéré de facteurs. Les auteurs de cet
article élaborent une méthode de construction de plans d’expérience comblant l’espace avec des essais de
tailles plus économiques. En plus de satisfaire l’orthogonalité entre colonnes, les plans proposés jouissent
d’une bonne partie des propriétés de stratification en basse dimension, propriétés que doivent posséder les
tableaux fortement orthogonaux. Aussi, certains de ces plans peuvent être 3-orthogonaux. Quelques résultats
théoriques concernant des plans factoriels fractionnaires réguliers découlent de l’approche proposée.

1. INTRODUCTION

Computer experiments are widely used in the sciences, engineering, social sciences, and
humanities to study complex physical systems. Space-filling designs are common and efficient
designs for computer experiments; see Fang, Li & Sudijanto (2006) and Santner, Williams &
Notz (2019). In general, a space-filling design is any design whose design points are dispersed
over the design area in some uniform manner.

An intuitive approach for constructing space-filling designs is to employ an algorithmic
search or a construction method based on a distance or discrepancy criterion; see Johnson,
Moore & Ylvisaker (1990) and Fang, Li & Sudijanto (2006) for early work, and Moon,
Dean & Santner (2011), Lin & Kang (2016), Wang, Xiao & Xu (2018), and Sun, Wang &
Xu (2019) for more recent developments. Inspired by (𝑡, 𝑚, 𝑠)-nets from quasi-Monte Carlo
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methods (Niederreiter, 1992), He & Tang (2013) introduced and studied strong orthogonal arrays
(SOAs). Compared to an ordinary orthogonal array (OA) with the same strength, an SOA has
better low-dimensional stratification properties. In order to reduce the cost of the experiment,
He & Tang (2014) and He, Cheng & Tang (2018) introduced SOAs of strength 3 and 2+. A
computer experiment often involves a large number of factors, especially in the early stages.
SOAs, even those with small strength, may still require run sizes that are too large for certain
scientific investigations.

Column orthogonality is another important desired property in the design of computer
experiments (Bingham, Sitter & Tang, 2009; Wang, Yang & Xu, 2018). There have been a
number of studies on orthogonal Latin hypercubes (OLHs), including Steinberg & Lin (2006),
Lin, Mukerjee & Tang (2009), Pang, Liu & Lin (2009), Lin et al. (2010), and Sun &
Tang (2017), but their run sizes and the number of levels are not flexible enough, and their
low-dimensional projections are not as good as those of SOAs. Several research results regarding
column-orthogonal strong orthogonal arrays (OSOAs) exist, such as Liu & Liu (2015), Zhou &
Tang (2019), and Li, Liu & Yang (2022). However, these OSOAs do not have 3-orthogonality;
yet the latter is a good property of designs, being stronger than column orthogonality (Bingham,
Sitter & Tang, 2009).

To solve the problems raised in the above two paragraphs, we intend to generate orthogonal
designs with economical run sizes that can achieve good low-dimensional space-filling properties.
The resulting designs not only enjoy almost the same attractive stratification property in two
dimensions as the existing SOAs of strength 2+ but also, as the number of levels is increased
from 𝑠

2 to 𝑠
3, achieve a finer stratification in any one dimension. Moreover, our construction

can generate designs with 3-orthogonality that have a relatively high proportion of column
triples displaying three-dimensional stratification. In addition, some theoretical properties on
orthogonality and regular fractional factorial designs are obtained.

The rest of the article is organized as follows. Section 2 introduces some useful definitions,
notation, and preliminaries. Section 3 presents the construction methods and the theoretical
properties of the proposed designs. We conclude the article with some discussion in Section 4.
All the proofs are provided in the Appendix.

2. NOTATION, DEFINITIONS, AND PRELIMINARIES

An orthogonal array (OA) with 𝑛 runs, 𝑚 factors, and strength 𝑡 is defined as an 𝑛 × 𝑚

array of values, called levels, where column 𝑗 contains 𝑠
𝑗

different levels, and for any set
of 𝑡 columns, all combinations of levels occur equally often. We denote such an orthogonal
array by OA(𝑛, 𝑚, 𝑠1 × · · · × 𝑠

𝑚
, 𝑡). The simple notation OA(𝑛, 𝑚, 𝑠, 𝑡) is used for the case

𝑠1 = · · · = 𝑠
𝑚
= 𝑠. In that case, we have 𝑛 = 𝜆𝑠

𝑡 for some integer 𝜆, which is called the index
of the OA. An OA(𝑛, 𝑚, 𝑠, 1) is denoted by U(𝑛; 𝑠𝑚), and a U(𝑛; 𝑛𝑚) is called a Latin hypercube
design, denoted as L(𝑛, 𝑚).

If there are 𝑠
𝑡 levels selected from {0,… , 𝑠

𝑡 − 1}, then they can be collapsed into 𝑠
𝑢 levels

(𝑢 < 𝑡) by replacing 𝑥 ∈ {0,… , 𝑠
𝑡 − 1} with ⌊𝑥∕𝑠𝑡−𝑢𝑗⌋, where ⌊𝑥⌋ is the largest integer not

exceeding 𝑥. An 𝑛 × 𝑚 matrix with entries from {0,… , 𝑠
𝑡 − 1} is called a strong orthogonal

array of 𝑛 runs, 𝑚 factors, 𝑠𝑡 levels, and strength 𝑡 if any 𝑔-column subarray with 1 ≤ 𝑔 ≤ 𝑡

can be collapsed into an OA(𝑛, 𝑔, 𝑠𝑢1 × · · · × 𝑠
𝑢
𝑔 , 𝑔) for any positive integers 𝑢1,… , 𝑢

𝑔
, with

𝑢1 + · · · + 𝑢
𝑔
= 𝑡. We denote such an array by SOA(𝑛, 𝑚, 𝑠𝑡, 𝑡). And we say the strong orthogonal

array achieves stratification on 𝑠
𝑢1 × · · · × 𝑠

𝑢
𝑔 grids in some 𝑔 dimensions if the corresponding

𝑔 columns of it can be collapsed into an OA(𝑛, 𝑔, 𝑠𝑢1 × · · · × 𝑠
𝑢
𝑔 , 𝑔). Any SOA(𝑛, 𝑚, 𝑠𝑡, 𝑡) can be

collapsed into an OA(𝑛, 𝑚, 𝑠, 𝑡) such that 𝑛 = 𝜆𝑠
𝑡, where 𝜆 is also called the index of the SOA.

Consequently, any SOA(𝑛, 𝑚, 𝑠3
, 3) can achieve stratification on 𝑠

2 × 𝑠 and 𝑠 × 𝑠
2 grids in two

dimensions and 𝑠 × 𝑠 × 𝑠 grids in three dimensions. We refer readers to He & Tang (2013, 2014)
for more details on SOAs.
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312 LI AND SUN Vol. 52, No. 1

An 𝑛 × 𝑚 matrix with entries from {0,… , 𝑠
2 − 1} is called a strong orthogonal array of

strength 2+ with 𝑛 runs and 𝑚 factors of 𝑠2 levels, denoted by SOA(𝑛, 𝑚, 𝑠2
, 2+), if any subarray

of two columns can be collapsed into an OA(𝑛, 2, 𝑠2 × 𝑠, 2) and an OA(𝑛, 2, 𝑠 × 𝑠
2
, 2). An SOA

of strength 2+ enjoys the same attractive two-dimensional space-filling property as that of an
SOA of strength 3, while the former has a larger number of factors. An SOA(𝑛, 𝑚, 𝑠2

, 2+) is
said to have strength three minus (3−) if any subarray of three columns can be collapsed into
an OA(𝑛, 3, 𝑠, 3). We denote this array by SOA(𝑛, 𝑚, 𝑠2

, 3−). See Zhou & Tang (2019) for more
details about SOAs of strength 3−. An 𝑛 × 𝑚 matrix with entries from {0,… , 𝑠

3 − 1} is called
a strong orthogonal array of strength 2∗ with 𝑛 runs and 𝑚 factors of 𝑠

3 levels, denoted by
SOA(𝑛, 𝑚, 𝑠3

, 2∗), if any subarray of two columns can be collapsed into an OA(𝑛, 2, 𝑠2 × 𝑠, 2) and
an OA(𝑛, 2, 𝑠 × 𝑠

2
, 2). See Li, Liu & Yang (2022) for more details about SOAs of strength 2∗.

An 𝑟 × 𝑐 matrix with entries from an Abelian group 𝐺 = {𝛼0,… , 𝛼
𝑠−1} with 𝛼0 = 0 of 𝑠

elements is called a difference scheme or difference matrix, denoted by D(𝑟, 𝑐, 𝑠), if it satisfies
that for any 𝑖 and 𝑗 with 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑐, the vector difference of the 𝑖th and 𝑗th columns contains
every element of 𝐺 equally often. A difference scheme is said to be normalized if its first column
consists of all zeros. For any difference scheme, if we subtract the first column from any column,
then we can obtain a normalized difference scheme. Let 𝐴 = (𝑎

𝑖𝑗
) be an 𝑛1 × 𝑚1 matrix and 𝐵 be

an 𝑛2 × 𝑚2 matrix, where both matrices have entries from an Abelian group 𝐺. The Kronecker
sum of 𝐴 and 𝐵 is an 𝑛1𝑛2 × 𝑚1𝑚2 matrix given by 𝐴⊕ 𝐵 = [𝐵𝑎

𝑖𝑗 ], where 𝐵
𝑎
𝑖𝑗 = (𝐵 + 𝑎

𝑖𝑗
) is

an 𝑛2 × 𝑚2 matrix, with + representing the addition in group 𝐺.
Centring a design U(𝑛, 𝑠𝑚) with 𝑠 equally spaced levels means that the 𝑠 levels are

converted into 𝑥 − (𝑠 − 1)∕2 for 𝑥 ∈ {0,… , 𝑠 − 1}, and then labelled as in the set Ω(𝑠) =
{−(𝑠 − 1)∕2,−(𝑠 − 3)∕2,… , (𝑠 − 3)∕2, (𝑠 − 1)∕2}. For example, the levels are −1∕2, 1∕2 if
𝑠 = 2 and −1, 0, 1 if 𝑠 = 3.

A design U(𝑛, 𝑠𝑚) is called column-orthogonal if the inner product of any two columns of the
centred design is zero, denoted by COD(𝑛, 𝑠𝑚). The 𝑠 levels of a design may be either from an
Abelian group 𝐺 or from Ω(𝑠). Which is being used should be clear from the context. A COD
that is also an SOA is called an orthogonal strong orthogonal array (OSOA). Similarly, a COD
that is also a L(𝑛, 𝑚) is called an orthogonal Latin hypercube design, denoted as OLH(𝑛, 𝑚).

For convenience, a design U(𝑛, 𝑠𝑚) is said to enjoy the two-dimensional and three-dimensional
stratification property if it can achieve stratification on 𝑠

2 × 𝑠 and 𝑠 × 𝑠
2 grids in two dimen-

sions and 𝑠 × 𝑠 × 𝑠 grids in three dimensions. We use 𝜋 and 𝜇 to denote the proportion of
two-dimensional and three-dimensional stratification, respectively.

3. CONSTRUCTION METHODS

We construct a class of space-filling designs with orthogonality and a high proportion of
two-dimensional stratification in this section. A subclass of designs can be 3-orthogonal
(3-orthogonality will be discussed in Section 3.2) and have a high proportion of three-dimensional
stratification. Some theoretical results related to the properties of the proposed designs are also
given in this section.

3.1. General Construction Method
In this subsection, we present the general approach for the construction of a low-dimensional
stratification design based on an 𝐴 = OA(𝑛, 𝑚, 𝑠, 2) and a difference scheme 𝐷 = D(𝑟, 𝑐, 𝑠). The
key to the construction is to arrange and group the columns of 𝐴⊕𝐷 in a proper way. The
construction depends on the parity of 𝑐. We describe the construction in several steps.

Construction 1. Let 𝐴 = (𝑎1,… , 𝑎
𝑚
) be an OA(𝑛, 𝑚, 𝑠, 2), 𝑚 ≥ 2, and let 𝐷 = (𝑑1,… , 𝑑

𝑐
) be a

normalized difference scheme D(𝑟, 𝑐, 𝑠) with 𝑐 ≥ 2. The levels of both 𝐴 and 𝐷 are taken from

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs.11761
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2024 A CLASS OF SPACE-FILLING DESIGNS 313

an Abelian group 𝐺 = {𝛼0,… , 𝛼
𝑠−1} with 𝛼0 = 0. 0

𝑛
denotes an 𝑛-dimensional column vector

with all entries zeros. The following steps present a construction for 𝑄∗ = COD(𝑟𝑛, (𝑠3)4𝑔) with
𝑔 = ⌊𝑐𝑚∕4⌋.

Step 1. Create
𝐵
𝑖
= 𝑎

𝑖
⊕ 𝐷 = (𝑎

𝑖
⊕ 𝑑1,… , 𝑎

𝑖
⊕ 𝑑

𝑐
), 𝑓𝑜𝑟 𝑖 ∈ {1,… , 𝑚}.

Divide each 𝐵
𝑖

into 𝑢 or 𝑢 + 1 blocks for 𝑖 ∈ {1,… , 𝑚} as

𝐵
𝑖
=

{
(𝐵

𝑖,1,… , 𝐵
𝑖,𝑢
) if 𝑐 = 2𝑢,

(𝓁
𝑖
, 𝐵

𝑖,1,… , 𝐵
𝑖,𝑢
) if 𝑐 = 2𝑢 + 1,

where 𝓁
𝑖
= 𝑎

𝑖
⊕ 𝑑1 = 𝑎

𝑖
⊕ 0

𝑟
, and each block 𝐵

𝑖,𝑗
, 𝑗 ∈ {1,… , 𝑢} is composed of two

adjacent columns in order from matrix 𝐵
𝑖
.

Step 2. (i) If 𝑐 is even, we have

⎛
⎜
⎜
⎜
⎜
⎝

𝐵1

𝐵2

⋮

𝐵
𝑚

⎞
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎝

𝐵1,1 𝐵1,2 · · · 𝐵1,𝑢

𝐵2,1 𝐵2,2 · · · 𝐵2,𝑢

⋮ ⋮ ⋱ ⋮

𝐵
𝑚,1 𝐵

𝑚,2 · · · 𝐵
𝑚,𝑢

⎞
⎟
⎟
⎟
⎟
⎠

,

and we order the mu blocks 𝐵
𝑖,𝑗

by column as

𝐵1,1, 𝐵2,1,… , 𝐵
𝑚,1; 𝐵1,2,… , 𝐵

𝑚,2; … ; 𝐵1,𝑢,… , 𝐵
𝑚,𝑢

.

The last block 𝐵
𝑚,𝑢

is deleted if 𝑐𝑚 is not a multiple of 4; then, we obtain

𝐵1,1, 𝐵2,1,… , 𝐵
𝑚,1; 𝐵1,2,… , 𝐵

𝑚,2; … ; 𝐵1,𝑢,… , 𝐵
𝑚′,𝑢, (1)

where 𝑚
′ = 𝑚 if 𝑐𝑚 is a multiple of 4, otherwise 𝑚

′ = 𝑚 − 1.
(ii) If 𝑐 is odd, we have

⎛
⎜
⎜
⎜
⎜
⎝

𝐵1

𝐵2

⋮

𝐵
𝑚

⎞
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎝

𝓁1 𝐵1,1 𝐵1,2 · · · 𝐵1,𝑢

𝓁2 𝐵2,1 𝐵2,2 · · · 𝐵2,𝑢

⋮ ⋮ ⋮ ⋱ ⋮

𝓁
𝑚

𝐵
𝑚,1 𝐵

𝑚,2 · · · 𝐵
𝑚,𝑢

⎞
⎟
⎟
⎟
⎟
⎠

.

Let 𝐿 = (𝓁1,… ,𝓁
𝑚
). We delete the last 𝑘 = 𝑐𝑚(mod 4) columns of 𝐿 and rearrange

the remaining 𝑚 − 𝑘 columns into (𝑚 − 𝑘)∕2 pairs as follows:

𝐿1 = (𝓁𝑖1 ,𝓁𝑖2 ),… , 𝐿v = (𝓁𝑖2v−1
,𝓁

𝑖2v
),… , 𝐿(𝑚−𝑘)∕2 = (𝓁𝑖

𝑚−𝑘−1
,𝓁

𝑖
𝑚−𝑘
) (2)

such that 𝑖2v−1, 𝑖2v ≠ (𝑚 + 𝑘)∕2 + v for v ∈ {1,… , (𝑚 − 𝑘)∕2}. Then, order the
(𝑐𝑚 − 𝑘)∕2 blocks as

𝐵1,1, 𝐵2,1,… , 𝐵
𝑚,1; 𝐵1,2,… , 𝐵

𝑚,2; … ; 𝐵1,𝑢−1,… , 𝐵
𝑚,𝑢−1;

𝐵1,𝑢,… , 𝐵(𝑚+𝑘)∕2,𝑢; 𝐵(𝑚+𝑘)∕2+1,𝑢, 𝐿1, … , 𝐵
𝑚,𝑢

, 𝐿(𝑚−𝑘)∕2. (3)

DOI: 10.1002/cjs.11761 The Canadian Journal of Statistics / La revue canadienne de statistique
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314 LI AND SUN Vol. 52, No. 1

Step 3. Map the 𝑠 levels of (1) and (3) to elements of Ω(𝑠), and denote the resulting design as
𝐵
∗
𝑖
, 𝐵

∗
𝑖,𝑗
, 𝐿

∗
𝑖

and 𝓁∗
𝑖
. Take two successive blocks at a time in the order given in (1) or (3),

and obtain 𝑔 sets of four columns, where 𝑔 = ⌊𝑐𝑚∕4⌋. Let these sets be 𝐵
(1)
,… , 𝐵

(𝑔),
and further let

𝐵
∗ =

(
𝐵
(1)
,… , 𝐵

(𝑔))
. (4)

Step 4. Define

𝑄
∗ =

(
𝑄
(1)
,… , 𝑄

(𝑔))
, (5)

where 𝑄
(𝑗) = 𝐵

(𝑗)
𝑉 for 𝑗 ∈ {1,… , 𝑔}, and

𝑉 =

⎛
⎜
⎜
⎜
⎜
⎝

𝑠
2 −𝑠 −1 0
𝑠 𝑠

2 0 1
1 0 𝑠

2 −𝑠
0 −1 𝑠 𝑠

2

⎞
⎟
⎟
⎟
⎟
⎠

.

For the design 𝑄
∗ in (5), we can obtain some theoretical properties, as shown below.

Theorem 1. If an OA(𝑛, 𝑚, 𝑠, 2) and a difference scheme D(𝑟, 𝑐, 𝑠) exist, then the design 𝑄
∗ in

(5) is a COD(𝑟𝑛, (𝑠3)4𝑔) with 𝑔 = ⌊𝑐𝑚∕4⌋ and has the following properties:

(i) any two columns achieve stratification on 𝑠 × 𝑠 grids;
(ii) the proportion 𝜋 of pairs of columns that achieve two-dimensional stratification is at least

𝜋0 with

𝜋0 =
⎧
⎪
⎨
⎪
⎩

(𝑐−1)(𝑚−1)(𝑐𝑚+𝑚−2𝑘)
(𝑐𝑚−𝑘)(𝑐𝑚−𝑘−1) when c is odd;

(𝑐𝑚−2𝑘)(𝑐𝑚−𝑐)
(𝑐𝑚−𝑘)(𝑐𝑚−𝑘−1) when c is even.

(6)

By Theorem 1, we know that the design generated by Construction 1 achieves the stratification
on 𝑠 × 𝑠 grids in any two dimensions and enjoys column orthogonality. Meanwhile, the
proportion of stratification on 𝑠

2 × 𝑠 and 𝑠 × 𝑠
2 grids is very high in most cases. Table A1

provides some designs generated by Construction 1. It can be seen that 𝜋0 ≥ 80% in most cases.
Moreover, the bounds 𝜋0 in (6) may not be tight, and the true two-dimensional stratification
proportion 𝜋 of the generated design is possibly higher than 𝜋0 in (6); see Table A1 for
details.

Corollary 1 clearly illustrates that we have a large 𝜋0 when 𝑚 is large, which is the special
case of Theorem 1 for the case of 𝑐 being even and 𝑐𝑚 being a multiple of 4.

Corollary 1. If an OA(𝑛, 𝑚, 𝑠, 2) and a difference scheme D(𝑟, 𝑐, 𝑠) exist, where 𝑐 is even and
𝑐𝑚 is a multiple of 4, then the design 𝑄

∗ in (5) is a COD(𝑟𝑛, (𝑠3)𝑐𝑚) with the proportion of pairs
of columns achieving stratification on 𝑠

2 × 𝑠 and 𝑠 × 𝑠
2 grids being at least

𝜋0 =
𝑐(𝑚 − 1)
𝑐𝑚 − 1

= 1 − 𝑐 − 1
𝑐𝑚 − 1

≥ 1 − 1
𝑚
.

The following remark is based on Corollary 1.

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs.11761
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2024 A CLASS OF SPACE-FILLING DESIGNS 315

Remark 1. Any column 𝑞 ∈ 𝑄
∗ can be written as 𝑞 = 𝑥𝑠

2 ± 𝑦𝑠 ± 𝑧, where (𝑥, 𝑦) ∈ 𝐵
∗
𝑖,𝑗

, 𝑧 ∈ 𝐵
∗
𝓁,w,

and 𝑖 ≠ 𝓁, and this means that 𝑥 and 𝑦 must be from the same block, but 𝑧 needs to be from a
different block.

(i) Suppose 𝑞1 = 𝑥1𝑠
2 ± 𝑦1𝑠 ± 𝑧1, 𝑞2 = 𝑥2𝑠

2 ± 𝑦2𝑠 ± 𝑧2 and (𝑥1, 𝑦1) ∈ 𝐵
∗
𝑖1,𝑗1

, (𝑥2, 𝑦2) ∈
𝐵
∗
𝑖2,𝑗2

. Note that 𝑞1 and 𝑞2 can achieve stratification on 𝑠
2 × 𝑠 and 𝑠 × 𝑠

2 grids if 𝑖1 ≠ 𝑖2.
Thus the design 𝑄

∗ is a class of strong group-orthogonal arrays (Wang, Yang & Liu, 2022).
(ii) Take 𝑞w = 𝑥w𝑠

2 ± 𝑦w𝑠 ± 𝑧w from 𝑄
∗ such that all 𝑖ws are distinct, where (𝑥w, 𝑦w) ∈ 𝐵

∗
𝑖w,𝑗w

.

By collecting all these 𝑞ws, we can obtain an OSOA(𝑟𝑛, 𝑚, 𝑠3
, 2∗). This method generalizes

the result of Li, Liu & Yang (2022), where they derive an OSOA(𝑠𝑛, 2⌊𝑚∕2⌋, 𝑠3
, 2∗) based

on an OA(𝑛, 𝑚, 𝑠, 2).
(iii) When 𝑐 is even and 𝑐𝑚 is not a multiple of 4, according to (1), we need to delete 𝑘 = 2

columns of 𝐵
𝑚,𝑢

. On the basis of (6), the proportion of pairs that achieve stratification on
𝑠

2 × 𝑠 and 𝑠 × 𝑠
2 grids is at least

𝜋0 =
(𝑐𝑚 − 𝑐)(𝑐𝑚 − 4)
(𝑐𝑚 − 2)(𝑐𝑚 − 3)

=
(

1 − 𝑐 − 2
𝑐𝑚 − 2

)(
1 − 1

𝑐𝑚 − 3

)

≥ 1 − 𝑐 − 2
𝑐𝑚 − 2

− 1
𝑐𝑚 − 3

.

As Construction 1 is somewhat technical, we present examples to illustrate the main idea.
First, we consider the case of an even 𝑐.

Example 1.

(i) We now construct a COD(64, 6420). Take 𝐴 = (𝑎1,… , 𝑎5) as an OA(16, 5, 4, 2) and
𝐷 = (𝑑1,… , 𝑑4) as a normalized difference scheme D(4, 4, 4). By Step 1 of Construction 1,
we have𝐵

𝑖
= 𝑎

𝑖
⊕ 𝐷 = (𝐵

𝑖,1, 𝐵𝑖,2), where𝐵
𝑖,1 = (𝑎𝑖 ⊕ 𝑑1, 𝑎𝑖 ⊕ 𝑑2),𝐵𝑖,2 = (𝑎𝑖 ⊕ 𝑑3, 𝑎𝑖 ⊕

𝑑4), for 𝑖 ∈ {1,… , 5}. Here, 𝑐𝑚 is a multiple of 4 and 𝑘 = 0. Then, arrange these columns
according to (1), i.e.,

𝐵1,1, 𝐵2,1; 𝐵3,1, 𝐵4,1; 𝐵5,1, 𝐵1,2; 𝐵2,2, 𝐵3,2; 𝐵4,2, 𝐵5,2.

Next, map the levels {0, 1, 2, 3} of 𝐵
𝑖,𝑗

to {−3∕2,−1∕2, 1∕2, 3∕2}; we obtain 𝐵
∗
𝑖,𝑗

,
𝑖 ∈ {1,… , 5}, and 𝑗 ∈ {1, 2}. Then, we have

𝑄
∗ =

{
𝑄
(1)
, 𝑄

(2)
, 𝑄

(3)
, 𝑄

(4)
, 𝑄

(5)} =
{(

𝐵
∗
1,1, 𝐵

∗
2,1

)
𝑉 ,

(
𝐵
∗
3,1, 𝐵

∗
4,1

)
𝑉 ,

(
𝐵
∗
5,1, 𝐵

∗
1,2

)
𝑉 ,

(
𝐵
∗
2,2, 𝐵

∗
3,2

)
𝑉 ,

(
𝐵
∗
4,2, 𝐵

∗
5,2

)
𝑉

}

is a COD(64, 6420) with 𝜋0 = 84.21%. Besides, COD(64, 6420) is an OLH(64, 20).
(ii) We construct a COD(48, 844) via Construction 1 based on 𝐴 = OA(12, 11, 2, 2) and

𝐷 = D(4, 4, 2). Note that 𝑘 = 0 here, and 𝜋0 = 93.02%. It can be checked that the
COD(48, 844) listed in Table A1 has a higher two-dimensional stratification proportion of
97.67%.

Example 1 illustrates the case in which 𝑐 in Construction 1 is even. Although the basic idea
of Construction 1 is related to the approach of Sun & Tang (2017), our new method enjoys
several advantages. When the run size is 𝑠

3, the design resulting from our method is an OLH
and includes more columns than an OLH obtained using Theorem 2 of Sun & Tang (2017). The

DOI: 10.1002/cjs.11761 The Canadian Journal of Statistics / La revue canadienne de statistique
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316 LI AND SUN Vol. 52, No. 1

OLH(64, 20) in Example 1 has four more columns than the OLH(64, 16) obtained by Sun &
Tang (2017). In addition, our run size is not necessarily a power of 𝑠, but is more flexible, so
our method can be used to construct a broader class of orthogonal designs than just OLHs. Most
importantly, the method produces designs that are space-filling in low dimensions.

When 𝑐 is odd, accumulating more columns in the design depends on careful arrangement
of the columns in 𝐿. As shown in Equation (2), according to Lemma A2 (ii) (in the
Appendix), columns paired in 𝐿 require the condition that 𝑖2v−1, 𝑖2v ≠ (𝑚 + 𝑘)∕2 + v for
v ∈ {1,… , (𝑚 − 𝑘)∕2}, which guarantees that [𝐵(𝑚+𝑘)∕2+1,𝑢, 𝐿1] and [𝐵

𝑚,𝑢
, 𝐿(𝑚−𝑘)∕2] in Equation

(3) are OAs of strength 3.
Next, we consider an example to illustrate the idea.

Example 2.

(i) This example constructs a COD(27, 2712). Let 𝐴 = (𝑎1,… , 𝑎4) be an OA(9, 4, 3, 2), and let
𝐷 = (𝑑1, 𝑑2, 𝑑3) be a normalized difference scheme D(3, 3, 3). From Step 1 of Construction
1, we can obtain 𝐵

𝑖
= 𝑎

𝑖
⊕ 𝐷 = (𝓁

𝑖
, 𝐵

𝑖,1), where 𝓁
𝑖
= 𝑎

𝑖
⊕ 𝑑1, 𝐵𝑖,1 = (𝑎𝑖 ⊕ 𝑑2, 𝑎𝑖 ⊕ 𝑑3),

with 𝑖 ∈ {1,… , 4}. Here, 𝑚 = 4, 𝑐 = 3, 𝑘 = 12(mod 4) = 0. Based on (2), we can take
𝐿1 = (𝓁2,𝓁4), 𝐿2 = (𝓁1,𝓁3). Order the six pairs as

𝐵1,1, 𝐵2,1; 𝐵3,1, (𝓁2,𝓁4); 𝐵4,1, (𝓁1,𝓁3).

After mapping the levels {0, 1, 2} toΩ(𝑠) = {−1, 0, 1}, we have 𝐵∗
𝑖,1 and 𝓁∗

𝑖
, 𝑖 ∈ {1,… , 4}.

Then

𝑄
∗ =

[
𝑄
(1)
, 𝑄

(2)
, 𝑄

(3)] =
[
(𝐵∗1,1, 𝐵

∗
2,1)𝑉 , (𝐵∗3,1, 𝓁

∗
2 ,𝓁

∗
4 )𝑉 , (𝐵∗4,1, 𝓁

∗
1 ,𝓁

∗
3 )𝑉

]

is a COD(27, 2712). When projecting on any two columns, the design can achieve
stratification on 3 × 3 grids, and the proportion of stratification on 9 × 3 and 3 × 9 grids is
72.73%. In addition, COD(27, 2712) is an OLH(27, 12).

(ii) We now derive a COD(54, 2720) from an OA(18, 7, 3, 2) and a normalized D(3, 3, 3).
Take OA(18, 7, 3, 2) and D(3, 3, 3) as 𝐴 = (𝑎1,… , 𝑎7) and 𝐷 = (𝑑1, 𝑑2, 𝑑3), respectively.
According to Construction 1, we have

(
𝓁⊤1 𝓁⊤2 𝓁⊤3 𝓁⊤4 𝓁⊤5 𝓁⊤6 𝓁⊤7
𝐵

⊤

1,1 𝐵
⊤

2,1 𝐵
⊤

3,1 𝐵
⊤

4,1 𝐵
⊤

5,1 𝐵
⊤

6,1 𝐵
⊤

7,1

)⊤

,

where 𝓁
𝑖
= 𝑎

𝑖
⊕ 𝑑1, 𝐵

𝑖,1 = (𝑎𝑖 ⊕ 𝑑2, 𝑎𝑖 ⊕ 𝑑3), 𝑖 ∈ {1,… , 7}. Here, 𝑚 = 7, 𝑐 = 3, 𝑘 =
21(mod 4) = 1, and we delete the column 𝓁7 and take 𝐿1 = (𝓁1,𝓁2), 𝐿2 = (𝓁3,𝓁4), 𝐿3 =
(𝓁5,𝓁6) based on (2). Order these pairs as

𝐵1,1, 𝐵2,1; 𝐵3,1, 𝐵4,1; 𝐵5,1, (𝓁1,𝓁2); 𝐵6,1, (𝓁3,𝓁4); 𝐵7,1, (𝓁5,𝓁6).

After mapping the levels {0, 1, 2} toΩ(𝑠) = {−1, 0, 1}, we have 𝐵∗
𝑖,1 and 𝓁∗

𝑖
, 𝑖 ∈ {1,… , 7}.

Then

𝑄
∗ =

{
𝑄
(1)
, 𝑄

(2)
, 𝑄

(3)
, 𝑄

(4)
, 𝑄

(5)} =
{(

𝐵
∗
1,1, 𝐵

∗
2,1

)
𝑉 ,

(
𝐵
∗
3,1, 𝐵

∗
4,1

)
𝑉 ,

(
𝐵
∗
5,1, 𝓁

∗
1 ,𝓁

∗
2 )𝑉 , (𝐵∗6,1, 𝓁

∗
3 ,𝓁

∗
4 )𝑉 , (𝐵∗7,1, 𝓁

∗
5 ,𝓁

∗
6 )𝑉

}

is a COD(54, 2720) with 𝜋0 = 82.11%.

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs.11761
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2024 A CLASS OF SPACE-FILLING DESIGNS 317

For given run sizes, the designs derived in Construction 1 can accommodate more factors
than SOAs with strength 2+ (He, Cheng & Tang, 2018) or 3− (Zhou & Tang, 2019). Given
an OA(𝑛, 𝑚, 𝑠, 2), Li, Liu & Yang (2021) presented a construction for COD

(
𝑠𝑛, (𝑠2)2⌊𝑠∕2⌋𝑚

)
.

Compared with their designs, the designs derived in Construction 1 can have more levels, more
flexible run sizes, more factors, and 3-orthogonality. For example, comparing our COD(27, 2712)
in Example 2 with COD(27, 98), we see that our method gives 𝑠3 = 27 levels versus their 𝑠2 = 9
and 12 factors rather than 8. Moreover, our method provides a large proportion of stratification
in three dimensions as will be discussed in the following subsections. Wang, Yang & Liu (2021)
also generated designs from an OA and a difference matrix, but compared with their design
COD

(
𝑠𝑛, (𝑠3)4⌊𝑚𝑠′∕2⌋

)
with 𝑠

′ = ⌊𝑠∕2⌋, our design enjoys the advantage of accommodating
more factors.

3.2. 3-Orthogonal Property
A column orthogonal design𝑋 = (𝑥

𝑖𝑗
)
𝑛×𝑚 with levels taken fromΩ(𝑠) is said to be 3-orthogonal if

𝑛∑

𝑖=1

𝑥
𝑖𝑗1
𝑥
𝑖𝑗2
𝑥
𝑖𝑗3
= 0 for 𝑗1 ≤ 𝑗2 ≤ 𝑗3.

Moreover, 3-orthogonality is used to measure the goodness of a design (Bingham, Sitter &
Tang, 2009). A design 𝑋 with centred levels is said to be mirror-symmetric if 𝑋 = −𝑋 up to
row permutations. A column-orthogonal mirror-symmetric design must be 3-orthogonal.

The next result can be derived from Theorem 1 of Sun, Pang & Liu (2011).

Lemma 1. Let 𝐴 be a 3-orthogonal matrix and 𝑅 be a column-orthogonal matrix. Then, 𝐴𝑅 is
a 3-orthogonal matrix.

For subsequent discussion, we now introduce regular fractional factorial designs. An
OA(𝑠𝑚−𝑝, 𝑚, 𝑠, 2) with levels taken from Galois field GF(𝑠) is said to be regular (Cheng, 2014)
if its runs are the solution sets of equations

𝑐
𝑇

𝑖
𝑥 = 𝑏

𝑖
, 𝑖 ∈ {1,… , 𝑝}

on GF(𝑠), where 𝑐1,… , 𝑐
𝑝

are linearly independent 𝑚-dimensional vectors, and 𝑏1,… , 𝑏
𝑝
∈

GF(𝑠).

Lemma 2. Suppose 𝐴 is an OA(𝑠𝑚−𝑝, 𝑚, 𝑠, 2) with levels taken from GF(𝑠) = {𝛼0,… , 𝛼
𝑠−1}

with 𝛼0 = 0, and
𝐷 = 𝐷0 ⊕ · · ·⊕𝐷0

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

w times

, (7)

where 𝐷0 = ℎℎ
⊤ and ℎ = (𝛼0,… , 𝛼

𝑠−1)⊤.
If 𝐴 is regular, then 𝐷⊕𝐴 is a regular OA(𝑠𝑚w−𝑝w , 𝑠w

𝑚, 𝑠, 2), with 𝑚w = 𝑠
w
𝑚 and

𝑝w = 𝑚(𝑠w − 1) + 𝑝 − w.

Theorem 3 of Tang & Xu (2014) states that a regular OA(𝑛, 𝑚, 𝑠, 2) with 𝑠 an odd prime can
be made mirror-symmetric by permuting the levels of the design. As a consequence, we have
following result:

Theorem 2. If 𝐴 in Construction 1 is a regular OA(𝑛, 𝑚, 𝑠, 2) with 𝑠 an odd prime and the
levels taken from {0,… , 𝑠 − 1}, and the difference scheme D defined as in Equation (7), then
𝑄
∗ in (5) can be a 3-orthogonal COD(𝑠w

𝑛, (𝑠3)4𝑔) with 𝑔 = ⌊𝑠w
𝑚∕4⌋.

DOI: 10.1002/cjs.11761 The Canadian Journal of Statistics / La revue canadienne de statistique
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318 LI AND SUN Vol. 52, No. 1

TABLE 1: Some CODs with 3-orthogonality.

Source design

COD(𝑛, 𝑠𝑚) Design 𝐴 Design 𝐷 L(𝑛1, 𝑚1) 𝜋
′
0(%)

COD(125, 12556) OA(25, 6, 5, 2) D(5, 5, 5) L(5, 2) 83.12

COD(625, 125304) OA(125, 31, 5, 2) D(5, 5, 5) L(5, 2) 93.80

COD(729, 729352) OA(81, 10, 9, 2) D(9, 9, 9) L(9, 4) 89.51

COD(1331,1331396) OA(121, 12, 11, 2) D(11, 11, 11) L(11, 3) 91.14

COD(2197,2197540) OA(169, 14, 13, 2) D(13, 13, 13) L(13, 3) 92.62

Note: Here, 𝜋′0 is the proportion of pairs that achieve stratification on 𝑠
2 × 𝑠 and 𝑠 × 𝑠

2 grids. Design 𝐴 comes from the
Rao−Hamming construction (Hedayat, Sloane & Stufken, 1999). L(5, 2), L(9, 4) come from Sun, Liu & Lin (2009), and
L(11, 3), L(13, 3) come from Wang et al. (2018). By computer search, OA(729,90,9,2) obtained from OA(81, 10, 9, 2)
and D(9, 9, 9) can be 3-orthogonal.

According to Theorem 2, we can easily see that the COD(27, 2712) in Example 2 can be
3-orthogonal; see Table A2.

Next, we consider constructing a 3-orthogonal design with a greater number of factors than
the design in Theorem 2. First, we need the following lemma:

Lemma 3. Suppose 𝐸 is an OA(𝑛, 𝑚, 𝑠, 2) and 𝐹 is an OLH(𝑠, 𝑑). For 𝑖 ∈ {1,… , 𝑑}, define
the matrix 𝐸

(𝑖) by replacing the level 𝑥 of 𝐸 with 𝐹
𝑥𝑖

. Then

𝐸
∗ = (𝐸(1)

,… , 𝐸
(𝑑))

is a COD(𝑛, 𝑠𝑑𝑚). Further, if both 𝐸 and 𝐹 are mirror-symmetric, 𝐸∗ is also mirror-symmetric
and 3-orthogonal.

The following corollary combines Construction 1 and Lemma 3.

Corollary 2. If a regular OA(𝑛, 𝑚, 𝑠, 2) and an orthogonal mirror-symmetric L(𝑠, 𝑑) with 𝑠 an
odd prime exist, then for any integer w ≥ 1, a 3-orthogonal COD(𝑠w

𝑛, (𝑠3)4𝑔𝑑)with 𝑔 = ⌊𝑠w
𝑚∕4⌋

can be constructed by combining Theorem 2 and Lemma 3. Additionally, the proportion of pairs
that achieve stratification on 𝑠

2 × 𝑠 and 𝑠 × 𝑠
2 grids is at least 𝜋′0 with

𝜋
′
0 =

𝑑(𝑐 − 1)(𝑚 − 1)(𝑐𝑚 + 𝑚 − 2𝑘)
(𝑐𝑚 − 𝑘)[𝑑(𝑐𝑚 − 𝑘) − 1]

,

where 𝑐 = 𝑠
w
.

Some CODs with 3-orthogonality generated by Theorem 2 and Corollary 2 are shown in
Table 1, and the proportions of pairs that achieve stratification on 𝑠

2 × 𝑠 and 𝑠 × 𝑠
2 grids for these

designs are relatively high. In addition, our designs enjoy a larger number of factors compared
with those found in the existing SOA-related literature. Next, we explain the above ideas with
an example.

Example 3. Let 𝐴 be a regular OA (25, 6, 5, 2) from the Rao−Hamming construction (Hedayat,
Sloane & Stufken, 1999), and 𝐷 = ℎℎ

⊤ with ℎ = (0, 1, 2, 3, 4)⊤, where the operations are

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs.11761
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2024 A CLASS OF SPACE-FILLING DESIGNS 319

modulo 5. Then, 𝐴⊕𝐷 is a regular OA (125, 30, 5, 2) (refer to Lemma 2), and we can obtain a
mirror-symmetric OA (125, 30, 5, 2) (Theorem 3 of Tang & Xu (2014). By (4) in Construction
1, we can obtain a mirror-symmetric 𝐵

∗ = OA (125, 28, 5, 2). Applying Corollary 2, and noting
that an orthogonal mirror-symmetric L (5, 2) can be found in Sun, Liu & Lin (2009), we can
obtain a 3-orthogonal COD (125, 12556) with 𝜋

′
0 = 83.12%.

3.3. Three-Dimensional Stratification Property
In Theorem 1, we give the two-dimensional stratification property of the proposed designs. Next,
we discuss the three-dimensional stratification property of 𝑄∗ in (5). We are ready to present the
next theorem.

Theorem 3. In Construction 1, if 𝐴 is a regular OA (𝑛, 𝑚, 𝑠, 2) and 𝐷 is defined in (7),
the proportion of 𝑄

∗ in (5) to achieve stratification on 𝑠 × 𝑠 × 𝑠 grids is at least 𝜇0 =
(4𝑔 − 𝑠 − 1)∕(4𝑔 − 2), where 𝑔 = ⌊𝑠w

𝑚∕4⌋.

The idea of Corollary 3 is similar to that of Corollary 2.

Corollary 3. Suppose a regular OA (𝑛, 𝑚, 𝑠, 2) and an OLH (𝑠, 𝑑) exist; then, COD (𝑠w
𝑛, (𝑠3)4𝑔𝑑)

can be generated by combining Theorem 3 and Lemma 3, and the proportion of triples that
achieve stratification on 𝑠 × 𝑠 × 𝑠 grids is at least 𝜇′0 with

𝜇
′
0 =

𝑑
2(4𝑔 − 1)(4𝑔 − 𝑠 − 1)
(4𝑔𝑑 − 1)(4𝑔𝑑 − 2)

,

where 𝑔 = ⌊𝑠w
𝑚∕4⌋ and w is a positive integer.

Next, we give two examples based on Theorem 3 and Corollary 3.

Example 4. The proportion of COD (27, 2712) constructed in Example 2 to achieve stratification
on 3 × 3 × 3 grids is at least 80%.

Example 5. For the COD (125, 12556) constructed in Example 3, the proportion that achieves
stratification on 5 × 5 × 5 grids is at least 80% according to Corollary 3.

From Table A1, we can see that the generated designs all have a larger three-dimensional
stratification portion than 𝜇0 or 𝜇′0.

4. DISCUSSION AND CONCLUSION

A general method was presented in Section 3 that enables the construction of a rich class
of space-filling orthogonal designs. The construction requires only an orthogonal array and a
difference matrix. The generated orthogonal designs have merits that achieve very attractive
stratification in low-dimensional projections.

If we take an orthogonal array𝐴with strength 𝑡 ≥ 3, then the low-dimensional stratification of
the design generated via Construction 1 can be improved. For example, if we take an orthogonal
array with strength 3, then any three columns 𝑞𝓁 = 𝑥𝓁𝑠

2 ± 𝑦𝓁𝑠 ± 𝑧𝓁 (𝓁 ∈ {1, 2, 3}) of 𝑄∗ can
achieve stratification on 𝑠

2 × 𝑠 × 𝑠 and 𝑠 × 𝑠
2 × 𝑠 and 𝑠 × 𝑠 × 𝑠

2 grids, where (𝑥𝓁 , 𝑦𝓁) ∈ 𝐵
∗
𝑖𝓁 ,𝑗𝓁

and 𝑖1, 𝑖2, 𝑖3 are distinct. This three-dimensional stratification property holds for an SOA with
strength 4 (Shi & Tang, 2020). If 𝑚 is even and 𝑐 = 2, the proportion that achieves this
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320 LI AND SUN Vol. 52, No. 1

three-dimensional stratification property is at least

𝜃 = 2(𝑚 − 2)
2𝑚 − 1

= 1 − 3
2𝑚 − 1

→ 1 as 𝑚→ ∞.

In practical applications, one may need to remove one or more columns of 𝑄∗ to obtain another
orthogonal design with the same run size. We suggest keeping the number of columns of the
group corresponding to 𝑎

𝑖
⊕ 𝐷 (1 ≤ 𝑖 ≤ 𝑚) as close to equal as possible without reducing the

number of groups. In this way, one can obtain a design with good low-dimensional projections.
All final designs generated by different 𝐴 and 𝐷 of the same dimensions have the same

column orthogonality and low-dimensional projections, as stated in Theorems 1 and 3, and the
same 3-orthogonality as guaranteed by Theorem 2. Choosing different 𝐴 and 𝐷 provides us with
an opportunity to find better designs using some secondary design criteria, such as distance or
discrepancy criteria. Further evaluating designs is an important direction we will consider in the
future. Moreover, the designs generated in this article can be used as original designs to obtain
even larger designs. Combining Example 1(i) (generating orthogonal L(64, 20)) and orthogonal
L(4, 2), an orthogonal L(64, 40) can be constructed by the method proposed by Lin, Mukerjee &
Tang (2009).
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APPENDIX

To prove Theorem 1, we need the following lemmas.

Lemma A1. Let 𝐴 = (𝑎1,… , 𝑎
𝑚
) be an OA (𝑛, 𝑚, 𝑠, 2) and 𝐷 = (𝑑1,… , 𝑑

𝑐
) be a difference

scheme D (𝑟, 𝑐, 𝑠), both based on an Abelian group 𝐺 = {𝛼0,… , 𝛼
𝑠−1} with 𝛼0 = 0; then, we

have the following results:

(i)
[
𝑑1 ⊕ (𝑎1, 𝑎2), 𝑑2 ⊕ 𝑎1

]
is an OA of strength 3;

(ii)
[
𝑎1 ⊕ (𝑑1, 𝑑2), 𝑎2 ⊕ 𝑑

𝑗

]
is an OA of strength 3 for any 𝑑

𝑗
∈ 𝐷;

(iii)
[
𝑑1 ⊕ (𝑎1, 𝑎2), 𝑑𝑗 ⊕ 𝑎3

]
is an OA of strength 3 if 𝑑1 = 0

𝑟
and 1 < 𝑗 ≤ 𝑐.

Lemma A2. For 𝐵
𝑖,𝑗

and 𝐿v = (𝓁𝑖2v−1
,𝓁

𝑖2v
) defined in Construction 1, we have the following:

(i) (𝐵
𝑖1,𝑗1

, 𝐵
𝑖2,𝑗2

) is an OA of strength 3 when 𝑖1 ≠ 𝑖2;
(ii) (𝐵

𝑖,𝑗
, 𝐿v) is an OA of strength 3 when 𝑖 ≠ 𝑖2v−1, 𝑖2v.
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322 LI AND SUN Vol. 52, No. 1

Proof . Item (i) can be obtained by item (ii) of Lemma 1, and item (ii) can easily be verified by
the cases (ii) and (iii) in Lemma 1. ◼

Proof of Theorem 1. The column-orthogonality and (i) follow from the fact that 𝐵∗ is an OA
and 𝑄

∗ = 𝐵
∗
𝑅
∗, where 𝑅∗ = diag(𝑉 ,… , 𝑉 ), with 𝑉 repeating 𝑔 times. It is easy to see that any

column 𝑞 of 𝑄∗ in (5) has the following form: 𝑞 = 𝑥𝑠
2 ± 𝑦𝑠 ± 𝑧, where (𝑥, 𝑦) ∈ 𝐵

∗
𝑖,𝑗

or 𝐿∗v . The
number of levels of 𝑄∗ is 𝑠3, according to Lemma 2.

Next, we show the two-dimensional stratification on 𝑠
2 × 𝑠 and 𝑠 × 𝑠

2 grids of 𝑄∗. We first
consider the case where 𝑐 is odd. The 𝐵

∗
𝑖,𝑗

s and 𝓁∗
𝑖
s can be divided into four groups as (A.1).

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝐶3 𝐶1

↑ ↑

𝓁∗1 𝐵
∗
1,1 𝐵

∗
1,2 · · · 𝐵

∗
1,𝑢

𝓁∗2 𝐵
∗
2,1 𝐵

∗
2,2 · · · 𝐵

∗
2,𝑢

⋮ ⋮ ⋮ ⋱ ⋮

𝓁∗
𝑚−𝑘 𝐵

∗
𝑚−𝑘,1 𝐵

∗
𝑚−𝑘,2 · · · 𝐵

∗
𝑚−𝑘,𝑢

𝓁∗
𝑚−𝑘+1 𝐵

∗
𝑚−𝑘+1,1 𝐵

∗
𝑚−𝑘+1,2 · · · 𝐵

∗
𝑚−𝑘+1,𝑢

⋮ ⋮ ⋮ ⋱ ⋮

𝓁∗
𝑚

𝐵
∗
𝑚,1 𝐵

∗
𝑚,2 · · · 𝐵

∗
𝑚,𝑢

↓ ↓

Deleted 𝐶2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (A.1)

Select two columns 𝑞w = 𝑥w𝑠
2 ± 𝑦w𝑠 ± 𝑧w (w = 1, 2) randomly from 𝑄

∗, and let 𝐸 be the
event, i.e.,

𝐸 =
{
𝑞1 and 𝑞2 achieve stratification on 𝑠

2 × 𝑠 and 𝑠 × 𝑠
2 grids

}
,

𝐹1 = {(𝑥1, 𝑦1) ∈ 𝐵
∗
𝑖,𝑗
∈ 𝐶1 in (A.1)},

𝐹2 = {(𝑥1, 𝑦1) ∈ 𝐵
∗
𝑖,𝑗
∈ 𝐶2 in (A.1)},

𝐹3 = {(𝑥1, 𝑦1) ∈ 𝐿
∗
v ∈ 𝐶3 in (A.1)},

then
Pr(𝐹1) =

(𝑚 − 𝑘)(𝑐 − 1)
𝑐𝑚 − 𝑘

, Pr(𝐹2) =
𝑘(𝑐 − 1)
𝑐𝑚 − 𝑘

, Pr(𝐹3) =
𝑚 − 𝑘

𝑐𝑚 − 𝑘
.

Event 𝐸 occurring is equivalent to both (𝑥1, 𝑦1, 𝑥2) and (𝑥1, 𝑥2, 𝑦2) being orthogonal arrays with
strength 3.

Given 𝐹1 and (𝑥1, 𝑦1) ∈ 𝐵
∗
𝑖1,𝑗1

∈ 𝐶1, if

• (𝑥2, 𝑦2) ∈ 𝐵
∗
𝑖2,𝑗2

and 𝑖1 ≠ 𝑖2 (refer to (i) of Lemma 2), or

• (𝑥2, 𝑦2) = (𝓁𝑖2v−1
,𝓁

𝑖2v
) ∈ 𝐿

∗
v and 𝑖1 ≠ 𝑖2v−1 (refer to (i) of Lemma 1 and (ii) of Lemma 2),

then 𝐸 holds. Thus

Pr(𝐸|𝐹1) ≥
(𝑚 − 1)(𝑐 − 1) + (𝑚 − 𝑘 − 1)

𝑐𝑚 − 𝑘 − 1
.

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs.11761
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2024 A CLASS OF SPACE-FILLING DESIGNS 323

Given 𝐹2 and (𝑥1, 𝑦1) ∈ 𝐵
∗
𝑖1,𝑗1

∈ 𝐶2, if

• (𝑥2, 𝑦2) ∈ 𝐵
∗
𝑖2,𝑗2

and 𝑖1 ≠ 𝑖2 (refer to (i) of Lemma 2), or
• (𝑥2, 𝑦2) = (𝓁𝑖2v−1

,𝓁
𝑖2v
) ∈ 𝐿

∗
v (refer to (ii) of Lemma 2),

then 𝐸 holds. Thus

Pr(𝐸|𝐹2) ≥
(𝑚 − 1)(𝑐 − 1) + (𝑚 − 𝑘)

𝑐𝑚 − 𝑘 − 1
.

Given 𝐹3 and (𝑥1, 𝑦1) = (𝓁𝑖2v−1
,𝓁

𝑖2v
) ∈ 𝐿

∗
v ∈ 𝐶3, if

• (𝑥2, 𝑦2) ∈ 𝐵
∗
𝑖2,𝑗2

and 𝑖2 ≠ 𝑖2v−1 (refer to (i) of Lemma 1 and (ii) of Lemma 2),

then 𝐸 holds. Thus

Pr(𝐸|𝐹3) ≥
(𝑚 − 1)(𝑐 − 1)
𝑐𝑚 − 𝑘 − 1

.

Based on the law of total probability

Pr(𝐸) = Pr(𝐹1)Pr(𝐸|𝐹1) + Pr(𝐹2)Pr(𝐸|𝐹2) + Pr(𝐹3)Pr(𝐸|𝐹3)

≥
(𝑐 − 1)(𝑚 − 1)(𝑐𝑚 + 𝑚 − 2𝑘)

(𝑐𝑚 − 𝑘)(𝑐𝑚 − 𝑘 − 1)
.

When 𝑐 is even, the 𝐵
∗
𝑖,𝑗

s can be divided into two groups 𝐶1 and 𝐶2 as (A.1), and 𝐵
∗
𝑚,𝑢

is
deleted from 𝐶2 if 𝑘 = 𝑐𝑚(mod 4) = 2.

Similar to the case where 𝑐 is odd, we have

Pr(𝐸) = Pr(𝐹1)Pr(𝐸|𝐹1) + Pr(𝐹2)Pr(𝐸|𝐹2)

≥
(𝑚 − 1)𝑐
𝑐𝑚 − 𝑘

(𝑚 − 1)𝑐 − 𝑘

𝑐𝑚 − 𝑘 − 1
+ 𝑐 − 𝑘

𝑐𝑚 − 𝑘

(𝑚 − 1)𝑐
𝑐𝑚 − 𝑘 − 1

= (𝑐𝑚 − 2𝑘)(𝑐𝑚 − 𝑐)
(𝑐𝑚 − 𝑘)(𝑐𝑚 − 𝑘 − 1)

.

◼

Proof of Lemma 2. We prove only that 𝐷0 ⊕𝐴 is regular; then, the conclusion follows by
recurrence.

We now construct 𝑝1 = 𝑚(𝑠 − 1) + 𝑝 − 1 linear independent equations with𝑚1 = 𝑠𝑚variables
on GF (𝑠) such that the runs of

𝐷0 ⊕𝐴 =
(
0
𝑠
⊕ 𝐴, 𝛼1ℎ ⊕ 𝐴, … , 𝛼

𝑠−1ℎ ⊕ 𝐴

)

are solution sets of these equations. Since 𝐴 is regular, suppose the runs of 𝐴 are solution sets of
linear independent equations

𝑐
𝑇

𝑖
𝑥 = 𝑏

𝑖
, 𝑖 ∈ {1,… , 𝑝}, with Rank(𝐶0) = 𝑝 and 𝐶0 = (𝑐1,… , 𝑐

𝑝
)
𝑚×𝑝.

This means 𝐴𝐶0 = 𝑏 ⊕ 0
𝑠𝑚−𝑝 , where 𝑏 = (𝑏1,… , 𝑏

𝑝
).
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Create an 𝑚1 × 𝑝1 matrix F defined in GF(𝑠) = {𝛼0,… , 𝛼
𝑠−1} with 𝛼0 = 0,

𝐹 = (𝑓1,… , 𝑓
𝑝1
) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝐶0 𝐸1 𝐸2 · · · 𝐸
𝑠−1

−𝐸1 𝐻2 · · · 𝐻
𝑠−1

𝐷2

⋱

𝐷
𝑠−1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

for 𝑠 ≥ 3,

and 𝐹 =

(
𝐶0 𝐸1

−𝐸1

)

for 𝑠 = 2,

where

𝐸1 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 · · · 1
−1 0 · · · 0
0 −1 · · · 0
⋮ ⋮ ⋱ ⋮

0 0 · · · −1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠
𝑚×(𝑚−1)

, 𝐸
𝑖
=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1 1 · · · 1
0 − 𝛼1

𝛼
𝑖

· · · 0

⋮ ⋮ ⋱ ⋮

0 0 · · · − 𝛼1
𝛼
𝑖

⎞
⎟
⎟
⎟
⎟
⎟
⎠
𝑚×𝑚

,

𝐻
𝑖
=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

− 𝛼
𝑖

𝛼
𝑖
−𝛼1

−1 · · · −1

0 0 · · · 0
⋮ ⋮ ⋱ ⋮

0 0 · · · 0

⎞
⎟
⎟
⎟
⎟
⎟
⎠
𝑚×𝑚

, 𝐷
𝑖
=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

𝛼1
𝛼
𝑖
−𝛼1

0 · · · 0

0 𝛼1
𝛼
𝑖

· · · 0

⋮ ⋮ ⋱ ⋮

0 0 · · · 𝛼1
𝛼
𝑖

⎞
⎟
⎟
⎟
⎟
⎟
⎠
𝑚×𝑚

,

𝑖 ∈ {2,… , 𝑠 − 1}, and the blanks of F are zeros. Clearly, rank (𝐹 ) = 𝑚(𝑠 − 1) + 𝑝 − 1 = 𝑝1.
It can be verified that

(𝐷0 ⊕𝐴)𝐹 = 𝑏
∗
⊕ 0

𝑠
𝑚1−𝑝1 , where 𝑏

∗ = (𝑏, 0⊤
𝑝1−𝑝).

Thus, equations

𝑓
⊤

𝑖
𝑦 = 𝑏

𝑖
, 𝑖 ∈ {1,… , 𝑝}; 𝑓⊤

𝑖
𝑦 = 0, 𝑖 ∈ {𝑝 + 1,… , 𝑝1},

hold for all runs of

𝐷0 ⊕𝐴 =
(
0
𝑠
⊕ 𝐴, 𝛼1ℎ ⊕ 𝐴, … , 𝛼

𝑠−1ℎ ⊕ 𝐴

)
.

Then, 𝐷0 ⊕𝐴 is a regular OA(𝑠𝑚1−𝑝1 , 𝑠𝑚, 𝑠, 2) with 𝑚1 = 𝑠𝑚 and 𝑝1 = 𝑚(𝑠 − 1) + 𝑝 − 1 based
on the definition of regularity. ◼

Proof of Theorem 3. From Construction 1, we can see that Q* in (5) becomes B* in (4) after
collapsing the factors into s levels. Therefore, we just need to consider the proportion of triples
from B* in (4) are orthogonal arrays of strength 3. Since B* is a regular orthogonal array (refer
to Lemma 2), for any two different columns 𝑏∗1 and 𝑏

∗
2, where 𝑏

∗
1, 𝑏∗2 ∈ 𝐵

∗, there are at most s−1
columns among all remaining columns that can be represented by the linear combination of 𝑏∗1 and
𝑏
∗
2. Thus, the proportion of 𝑄∗ in (5) to achieve stratification on 𝑠 × 𝑠 × 𝑠 grids is at least 𝜇0, with

𝜇0 =
4𝑔(4𝑔 − 1)(4𝑔 − 2 − (𝑠 − 1))

4𝑔(4𝑔 − 1)(4𝑔 − 2)
= 4𝑔 − 𝑠 − 1

4𝑔 − 2
.

◼
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2024 A CLASS OF SPACE-FILLING DESIGNS 325

TABLE A1: Some CODs with small run sizes which can be generated by Construction 1.

Source design 𝜋0(%) 𝜇0(%)

COD(𝑛, 𝑠𝑚) Design 𝐴 Design 𝐷 (or 𝜋′0) 𝜋(%) ( or 𝜇′0) 𝜇(%)

COD(16, 812) OA(8, 7, 2, 2) D(2, 2, 2) 90.91 90.91 90.00 92.73

COD(32, 828) OA(16, 15, 2, 2) D(2, 2, 2) 96.30 96.30 96.15 96.58

COD(32, 828) OA(8, 7, 2, 2) D(4, 4, 2) 88.89 96.30 96.15 99.60

COD(48, 844) OA(24, 23, 2, 2) D(2, 2, 2) 97.67 97.67 - 82.48

COD(48, 844) OA(12, 11, 2, 2) D(4, 4, 2) 93.02 97.67 - 99.84

COD(64, 860) OA(32, 31, 2, 2) D(2, 2, 2) 98.31 98.31 98.28 98.36

COD(80, 876) OA(40, 39, 2, 2) D(2, 2, 2) 98.67 98.67 - 79.58

COD(96, 892) OA(48, 47, 2, 2) D(2, 2, 2) 98.90 98.90 - 91.96

COD(128, 8124) OA(64, 63, 2, 2) D(2, 2, 2) 99.19 99.19 99.18 99.20

COD(27, 2712) OA(9, 4, 3, 2) D(3, 3, 3) 72.73 72.73 80.00 81.82

COD(54, 2720) OA(18, 7, 3, 2) D(3, 3, 3) 82.11 82.11 - 78.95

COD(54, 2724) OA(9, 4, 3, 2) D(6, 6, 3) 78.26 78.26 - 73.37

COD(81, 2736) OA(9, 4, 3, 2) D(9, 9, 3) 76.19 93.97 94.12 94.79

COD(81, 2736) OA(27, 13, 3, 2) D(3, 3, 3) 87.62 91.90 94.12 94.75

COD(162, 2772) OA(54, 25, 3, 2) D(3, 3, 3) 88.26 92.80 - 91.62

COD(162, 2776) OA(27, 13, 3, 2) D(6, 6, 3) 93.47 93.47 - 91.88

COD(64, 6420) OA(16, 5, 4, 2) D(4, 4, 4) 84.21 84.21 83.33 84.21

COD(128, 6436) OA(32, 9, 4, 2) D(4, 4, 4) 91.43 91.43 - 80.67

COD(128, 6440) OA(16, 5, 4, 2) D(8, 8, 4) 82.05 82.05 - 81.62

COD(125, 12556) OA(25, 6, 5, 2) D(5, 5, 5) 83.12 83.12 80.00 81.50

Here, 𝜋 is the true proportion of pairs that achieve stratification on 𝑠
2 × 𝑠 and 𝑠 × 𝑠

2 grids, and 𝜇 is the true proportion
of triples that achieve stratification on 𝑠 × 𝑠 × 𝑠 grids. We use “-” to indicate that the proportion is not given because the
design does not meet the conditions of Theorem 3.
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TABLE A2: COD(27, 2712)

𝑄
(1)

𝑄
(2)

𝑄
(3)

−13 −5 −11 −7 11 6 −10 4 −1 −1 −6 12

−12 −6 1 −1 −12 −5 −2 −10 −13 −5 −11 −7

−11 −7 13 5 1 −1 12 6 11 6 −10 4

−1 1 −12 −6 −13 −7 −5 11 12 7 −4 −8

0 0 0 0 0 0 0 0 0 0 0 0

1 −1 12 6 13 7 5 −11 −12 −7 4 8

11 7 −13 −5 −1 1 −12 −6 −11 −6 10 −4

12 6 −1 1 12 5 2 10 13 5 11 7

13 5 11 7 −11 −6 10 −4 1 1 6 −12

3 8 3 10 −10 3 −8 3 5 −13 −7 11

4 10 6 −11 3 10 −3 −8 2 10 −12 −5

2 9 −9 4 7 −13 11 5 −10 3 −8 3

6 −13 2 8 2 8 −6 13 −9 4 −2 −9

7 −11 5 −13 6 −12 −1 −1 6 −12 −1 −1

5 −12 −10 2 −8 4 7 −12 3 8 3 10

−9 2 4 9 5 −11 −13 −7 4 9 9 −2

−8 4 7 −12 −9 2 4 9 −8 2 13 6

−10 3 −8 3 4 9 9 −2 7 −11 5 −13

10 −3 8 −3 −4 −9 −9 2 −7 11 −5 13

8 −4 −7 12 9 −2 −4 −9 8 −2 −13 −6

9 −2 −4 −9 −5 11 13 7 −4 −9 −9 2

−5 12 10 −2 8 −4 −7 12 −3 −8 −3 −10

−7 11 −5 13 −6 12 1 1 −6 12 1 1

−6 13 −2 −8 −2 −8 6 −13 9 −4 2 9

−2 −9 9 −4 −7 13 −11 −5 10 −3 8 −3

−4 −10 −6 11 −3 −10 3 8 −2 −10 12 5

−3 −8 −3 −10 10 −3 8 −3 −5 13 7 −11
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